Amazon cover image
Image from Amazon.com

Introduction to computational contact mechanics : a geometrical approach / Alexander Konyukhov and Ridvan Izi

By: Contributor(s): Material type: TextTextLanguage: Eng Series: Chichester, West Sussex : Wiley, 2015Description: xvii, 282 pages illustrationsContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 9781118770658
Subject(s): LOC classification:
  • TA363  KON
Contents:
Cover; Title Page; Copyright; Contents; Series Preface; Preface; Acknowledgments; Part I Theory; Chapter 1 Introduction with a Spring-Mass Frictionless Contact System; 1.1 Structural Part-Deflection of Spring-Mass System; 1.2 Contact Part-Non-Penetration into Rigid Plane; 1.3 Contact Formulations; 1.3.1 Lagrange Multiplier Method; 1.3.2 Penalty Method; 1.3.3 Augmented Lagrangian Method; Chapter 2 General Formulation of a Contact Problem; 2.1 Structural Part-Formulation of a Problem in Linear Elasticity; 2.1.1 Strong Formulation of Equilibrium; 2.1.2 Weak Formulation of Equilibrium 2.2 Formulation of the Contact Part (Signorini's problem)Chapter 3 Differential Geometry; 3.1 Curve and its Properties; 3.1.1 Example: Circle and its Properties; 3.2 Frenet Formulas in 2D; 3.3 Description of Surfaces by Gauss Coordinates; 3.3.1 Tangent and Normal Vectors: Surface Coordinate System; 3.3.2 Basis Vectors: Metric Tensor and its Applications; 3.3.3 Relationships between Co- and Contravariant Basis Vectors; 3.3.4 Co- and Contravariant Representation of a Vector on a Surface; 3.3.5 Curvature Tensor and Structure of the Surface; 3.4 Differential Properties of Surfaces 4.3.2 Contact Kinematics in 3D Coordinate SystemChapter 5 Abstract Form of Formulations in Computational Mechanics; 5.1 Operator Necessary for the Abstract Formulation; 5.1.1 Examples of Operators in Mechanics; 5.1.2 Examples of Various Problems; 5.2 Abstract Form of the Iterative Method; 5.3 Fixed Point Theorem (Banach); 5.4 Newton Iterative Solution Method; 5.4.1 Geometrical Interpretation of the Newton Iterative Method; 5.5 Abstract Form for Contact Formulations; 5.5.1 Lagrange Multiplier Method in Operator Form; 5.5.2 Penalty Method in Operator Form
Summary: Introduction to Computational Contact Mechanics: A Geometrical Approach covers the fundamentals of computational contact mechanics and focuses on its practical implementation. Part one of this textbook focuses on the underlying theory and covers essential information about differential geometry and mathematical methods which are necessary to build the computational algorithm independently from other courses in mechanics. The geometrically exact theory for the computational contact mechanics is described in step-by-step manner, using examples of strict derivation from a mathematical point of vi
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Shelving location Call number Copy number Status Date due Barcode
Books Books Harare Institute of Technology Main Library Harare Institute of Technology Main Library General Collection TA363 KON (Browse shelf(Opens below)) 1 Available BK0009798

Includes index

Cover; Title Page; Copyright; Contents; Series Preface; Preface; Acknowledgments; Part I Theory; Chapter 1 Introduction with a Spring-Mass Frictionless Contact System; 1.1 Structural Part-Deflection of Spring-Mass System; 1.2 Contact Part-Non-Penetration into Rigid Plane; 1.3 Contact Formulations; 1.3.1 Lagrange Multiplier Method; 1.3.2 Penalty Method; 1.3.3 Augmented Lagrangian Method; Chapter 2 General Formulation of a Contact Problem; 2.1 Structural Part-Formulation of a Problem in Linear Elasticity; 2.1.1 Strong Formulation of Equilibrium; 2.1.2 Weak Formulation of Equilibrium 2.2 Formulation of the Contact Part (Signorini's problem)Chapter 3 Differential Geometry; 3.1 Curve and its Properties; 3.1.1 Example: Circle and its Properties; 3.2 Frenet Formulas in 2D; 3.3 Description of Surfaces by Gauss Coordinates; 3.3.1 Tangent and Normal Vectors: Surface Coordinate System; 3.3.2 Basis Vectors: Metric Tensor and its Applications; 3.3.3 Relationships between Co- and Contravariant Basis Vectors; 3.3.4 Co- and Contravariant Representation of a Vector on a Surface; 3.3.5 Curvature Tensor and Structure of the Surface; 3.4 Differential Properties of Surfaces 4.3.2 Contact Kinematics in 3D Coordinate SystemChapter 5 Abstract Form of Formulations in Computational Mechanics; 5.1 Operator Necessary for the Abstract Formulation; 5.1.1 Examples of Operators in Mechanics; 5.1.2 Examples of Various Problems; 5.2 Abstract Form of the Iterative Method; 5.3 Fixed Point Theorem (Banach); 5.4 Newton Iterative Solution Method; 5.4.1 Geometrical Interpretation of the Newton Iterative Method; 5.5 Abstract Form for Contact Formulations; 5.5.1 Lagrange Multiplier Method in Operator Form; 5.5.2 Penalty Method in Operator Form

Introduction to Computational Contact Mechanics: A Geometrical Approach covers the fundamentals of computational contact mechanics and focuses on its practical implementation. Part one of this textbook focuses on the underlying theory and covers essential information about differential geometry and mathematical methods which are necessary to build the computational algorithm independently from other courses in mechanics. The geometrically exact theory for the computational contact mechanics is described in step-by-step manner, using examples of strict derivation from a mathematical point of vi

There are no comments on this title.

to post a comment.