Recent developments and applications of modern density functional theory / Edited by J. M. Seminario
Material type:
- text
- unmediated
- volume
- 9780444824042
- QD462.6.D45 REC
Item type | Current library | Home library | Shelving location | Call number | Copy number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|---|
![]() |
Harare Institute of Technology Main Library | Harare Institute of Technology Main Library | General Collection | QD462.6.D45 REC (Browse shelf(Opens below)) | 1 | Available | BK002697 |
Browsing Harare Institute of Technology Main Library shelves, Shelving location: General Collection Close shelf browser (Hides shelf browser)
Includes index
Includes bibliography
Part I: Basics. 1. Elementary concepts in density functional theory. (M. Levy). 2. Explicit density functionals for the energy by means of pade approximants to local-scaling transformations. (E.V. Ludena, R. Lopez-Boada, R. Pino). 3. Inhomogenous electron gas: transcending semiclassical Thomas-Fermi-Dirac method (N.M. March). 4. An introduction to high-precision computational methods for simple atomic and molecular systems (F.C. Sanders). 5. Density functional theory in the classical domain (J.K. Percus).Part II: Functionals and their Problems. 6. Density functional theory, the exchange hole, and the molecular bond (M. Ernzerhof, K. Burke, J.P. Perdew). 7. Nonlocal weighted density approximation to exchange, correlation and kinetic energy in density functional theory (J.A. Alonso, N.A. Cordero). 8. Generalized gradient approximations to density functional theory: comparison with exact results (C. Filippi, X. Gonze, C.J. Umrigar). 9. On degeneracy, near-degenaracy and density functional theory (A. Savin). 10. A simple method of removing spin contamination from unrestricted Kohn-Sham density functional calculations. (A.A. Ovchinnikov, C.F. Bender, J.K. Labanowski).Part III: Approaches and Methods. 11. Time-dependent density functional response theory of molecular systems: theory, computational methods, and functionals (M.E. Casida). 12. Advances in methodologies for linear-scaling density functional calculations (B.G. Johnson et al.). 13. A divide-and-conquer implementation of the linear combination of Gaussian-type orbitals density functional (LCGTO-DF) method (A. St-Amant, S. Koon Goh, R.T. Gallant). 14. The Douglas-Kroll-Hess approach to relativistic density functional theory; methodological aspects and applications to metal complexes and clusters (N. Roesch, M. Mayer, V.A. Nasluzov).Part IV: Applications. 15. Adsorption complexes on oxides: density functional model cluster studies (K.M. Neyman, G. Pacchioni, N. Roesch). 16. Density functional theory as a tool in studying catalytic processes (E. Broclawik, R. Vetrivel, A. Miyamoto). 17. DFT study of nickel: towards the MD simulation of the nickel-waterinterface (P.B. Balbuena, J.M. Seminario). 18. Systematic model chemistries based on density functional theory: comparison with traditional models and with experiment (M.J. Frisch, G.W. Trucks, J.R. Cheeseman). 19. Computing transition state structures with density functional theory methods (B.S. Jursic). 20. Density functional theory as a tool for the prediction of the properties in molecules with biological and pharmacological significance (M. Belcastro et al.). 21. Density functional theory concepts and techniques for studying molecular charge distributions and related properties. (P. Geerlings, F. De Proft, J.M.L. Martin). 22. Density functional calculations of heats and reaction (P. Politzer, J.M. Wiener, J.M. Seminario). Index.
Any area where a molecular system is the center of attention can be studied using Density Functional Theory (DFT). This book describes the status of Density Functional Theory (DFT), which has evolved as the main technique for the study of matter at the atomistic level.
There are no comments on this title.