Amazon cover image
Image from Amazon.com

Magnetic resonance spectroscopy : tools for neuroscience research and emerging clinical applications / Edited by Charlotte J Stagg and Douglas L Rothman

Contributor(s): Material type: TextTextAmsterdam : Elsevier, ©2014Description: xvi, 359 pages : illustrationContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 9780124016880
Subject(s): LOC classification:
  • RC386.6 MAG
Contents:
Section 1: Technical Aspects - How MRS Is Acquired 1.1 Basis of Magnetic Resonance 1.2 Localized Single-Voxel Magnetic Resonance Spectroscopy, Water Suppression, and Novel Approaches for Ultrashort Echo-Time Measurements 1.3 Technical considerations for Multivoxel Approaches and Magnetic Resonance Spectroscopic Imaging 1.4 Spectral Editing and 2D NMR 1.5 Spectral Quantification and Pitfalls in Interpreting Magnetic Resonance Spectroscopic Data: What to Look Out For Section 2: Biochemistry - What Underlies the Signal? 2.1 N-Acetylaspartate and N-Acetylaspartylglutamate in Central Nervous System Health and Disease 2.2 The Biochemistry of Creatine 2.3 The Biochemistry of Choline 2.4 Glutamate 2.5 Other Significant Metabolites: Myo-Inositol, GABA, Glutamine, and Lactate Section 3: Applications of Proton-MRS 3.1 Usefulness of Proton Magnetic Resonance Spectroscopy in the Clinical Management of Brain Tumors 3.2 Multiple Sclerosis and Inflammatory Diseases 3.3 Epilepsy 3.4 Stroke and Cerebral Ischaemia 3.5 Use of MRS in Inborn Errors of Metabolism: Canavan's Disease and MRS in Differential Diagnosis 3.6 MRS of Psychiatric Disorders 3.7 Preclinical and Clinical Applications of 1H-MRS in the Spinal Cord 3.8 Interindividual Differences in Behavior and Plasticity 3.9 MRS in Development and Across the Lifespan 3.10 Hormonal Influences on Magnetic Resonance Spectroscopy Measures 3.11 Magnetic Resonance Spectroscopy in Neuroenergetics and Neurotransmission Section 4: Applications of Non-Proton MRS 4.1 Quantitative Metabolic Magnetic Resonance Imaging of Sodium, Oxygen, Phosphorus, and Potassium in the Human Brain: A Rationale for Bioscales in Clinical Applications 4.2 Carbon (13C) MRS 4.3 Hyperpolarized Magnetic Resonance Imaging and Spectroscopy of the Brain
Summary: Suitable for people new to the technique and give those more familiar with magnetic resonance spectroscopy (MRS) a new perspective, this book addresses the technique of magnetic resonance spectroscopy. It covers both proton and non-proton MRS.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Shelving location Call number Copy number Status Date due Barcode
Books Books Harare Institute of Technology Main Library Harare Institute of Technology Main Library General Collection RC386.6 MAG (Browse shelf(Opens below)) 1 Available BK002419
Books Books School of Radiography Library School of Radiography Library General Collection RC386.6 MAG (Browse shelf(Opens below)) 2 Available BK002635

Includes index

Includes bibliography

Section 1: Technical Aspects - How MRS Is Acquired 1.1 Basis of Magnetic Resonance 1.2 Localized Single-Voxel Magnetic Resonance Spectroscopy, Water Suppression, and Novel Approaches for Ultrashort Echo-Time Measurements 1.3 Technical considerations for Multivoxel Approaches and Magnetic Resonance Spectroscopic Imaging 1.4 Spectral Editing and 2D NMR 1.5 Spectral Quantification and Pitfalls in Interpreting Magnetic Resonance Spectroscopic Data: What to Look Out For Section 2: Biochemistry - What Underlies the Signal? 2.1 N-Acetylaspartate and N-Acetylaspartylglutamate in Central Nervous System Health and Disease 2.2 The Biochemistry of Creatine 2.3 The Biochemistry of Choline 2.4 Glutamate 2.5 Other Significant Metabolites: Myo-Inositol, GABA, Glutamine, and Lactate Section 3: Applications of Proton-MRS 3.1 Usefulness of Proton Magnetic Resonance Spectroscopy in the Clinical Management of Brain Tumors 3.2 Multiple Sclerosis and Inflammatory Diseases 3.3 Epilepsy 3.4 Stroke and Cerebral Ischaemia 3.5 Use of MRS in Inborn Errors of Metabolism: Canavan's Disease and MRS in Differential Diagnosis 3.6 MRS of Psychiatric Disorders 3.7 Preclinical and Clinical Applications of 1H-MRS in the Spinal Cord 3.8 Interindividual Differences in Behavior and Plasticity 3.9 MRS in Development and Across the Lifespan 3.10 Hormonal Influences on Magnetic Resonance Spectroscopy Measures 3.11 Magnetic Resonance Spectroscopy in Neuroenergetics and Neurotransmission Section 4: Applications of Non-Proton MRS 4.1 Quantitative Metabolic Magnetic Resonance Imaging of Sodium, Oxygen, Phosphorus, and Potassium in the Human Brain: A Rationale for Bioscales in Clinical Applications 4.2 Carbon (13C) MRS 4.3 Hyperpolarized Magnetic Resonance Imaging and Spectroscopy of the Brain

Suitable for people new to the technique and give those more familiar with magnetic resonance spectroscopy (MRS) a new perspective, this book addresses the technique of magnetic resonance spectroscopy. It covers both proton and non-proton MRS.

There are no comments on this title.

to post a comment.